Final Examination, 15 December 1998 SM311O (Fall 1998)

The following formulas may be useful to you:

- 1. (a) Let $\mathbf{v} = \langle x^2 z, y \sin(xy), e^{-xz} \rangle$. Find the divergence of \mathbf{v} .
 - (b) $\mathbf{v} = \langle \frac{y}{\sqrt{x^2+y^2}}, -\frac{x}{\sqrt{x^2+y^2}}, 0 \rangle$. Find the curl of \mathbf{v} .
 - (c) Let $f(x,y) = e^{2x} \sin 3\pi y$. Find the direction of steepest descent at $P = (0,\frac{1}{4})$.
- 2. Verify by direct differentiation if
 - (a) $u(z) = e^z \cos z$ is a solution of $u'''' + a^2 u = 0$ for any a.
 - (b) $u(x,y) = \sin 3x \sin 4y$ is an eigenfunction of the Laplace operator $-\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2}$. What is the eigenvalue?
- 3. Parametrize the following curves and surfaces:
 - (a) The plane passing through the points (1,1,0), (0,3,2), and (1,0,5).
 - (b) The curve $x^2 + 3y^2 = 2$.
 - (c) The upper hemisphere of radius 2 centered at (1, -1, 1).
- 4. (a) The function $\phi(x, y, z) = ax^2y^2 + by^2z^2 + cz^2x^2 x$ is the potential for a velocity vector field \mathbf{v} . Determine the values of a, b, and c so that the velocity of the particle located at (1, -2, 3) is zero.
 - (b) The function $\psi(x,y) = ax^2 xy + by^2$ is the stream function of a velocity field **v**. Find a and b so that the velocity of the particle located at (-1,4) is perpendicular to (1,1).
- 5. (a) Consider the velocity vector field $\mathbf{v} = \langle x^2 y^2, -2xy + x^3 \rangle$. Does this vector field have a stream function? If yes, find it.
 - (b) Let u and v be the velocities in a geostrophic flow with $A_V = 0$. What is the geometric relationship between the isobars and the particle paths of typical fluid particles?

- 2
- 6. A flow is called barotropic if the pressure field p is a function of the density ρ , that is, $p = f(\rho)$ for some function f.
 - (a) Compute ∇p in terms of $\nabla \rho$. What can you conclude about $\nabla p \times \nabla \rho$ in a barotropic flow? Why? What does this result say about the isobars and isopycnals of the flow? Why?
 - (b) Let $f(x) = x^2 + 3x$. Suppose that the density at P = (1, 2, 3) is 1.003. Furthermore, suppose that the pressure gradient at P is (3, 4, 2). What is the density gradient at P?
- 7. (a) Let p and ρ be two arbitrary smooth functions of x, y, and z. Use direct differentiation and prove the identity

$$\nabla \times \left(\frac{1}{\rho} \nabla p\right) = -\frac{1}{\rho^2} (\nabla \rho \times \nabla p).$$

- (b) Use the above identity, the conclusion in 6(a), and the Stokes theorem to compute the line integral $\oint_C \frac{1}{\rho} \nabla p \cdot d\mathbf{r}$ where C is a closed curve and p and ρ are the pressure and density of a barotropic flow.
- 8. Consider the following heat conduction problem:

$$u_t = 5u_{xx},$$
 $u(0,t) = u(2,t) = 0,$ $u(x,0) = 1.3\sin\frac{\pi x}{2} + 3.4\sin 2\pi x.$

- (a) Describe a physical model for which the above BVP makes sense.
- (b) Assuming that u is the temperature, find the units of the physical quantity whose value is 5 in the heat equation.
- (c) Use separation of variables and find the solution to this problem.
- (d) Use the first nonzero term of the above solution and estimate how long it takes for the temperature at x = 1 to reach 50 per cent of its original value.
- 9. Let $\mathbf{v} = \langle y^2, 2xy \rangle$ be the velocity field of a fluid.
 - (a) Compute the vorticity of the flow. Is the flow irrotational anywhere in the xy-plane?
 - (b) Compute the acceleration a of this flow. Does a have a potential p? If yes, find it.
- 10. Consider the viscous geostrophic equations listed on the previous page. Assuming that u and v are only functions of z, that ρ , f, and A_V are constants, and that $\lim_{z\to\infty} u(z) = U$, a constant, and $\lim_{z\to\infty} v(z) = 0$,
 - (a) Prove that ∇p must be a constant vector.
 - (b) Find the ODE that u must satisfy.